Cell death in the Schwann cell lineage and its regulation by neuregulin.

نویسندگان

  • D E Syroid
  • P R Maycox
  • P G Burrola
  • N Liu
  • D Wen
  • K F Lee
  • G Lemke
  • T J Kilpatrick
چکیده

The development of Schwann cells, the myelin-forming glial cells of the vertebrate peripheral nervous system, involves a neonatal phase of proliferation in which cells migrate along and segregate newly formed axons. Withdrawal from the cell cycle, around postnatal days 2-4 in rodents, initiates terminal differentiation to the myelinating state. During this time, Schwann cell number is subject to stringent regulation such that within the first postnatal week, axons and myelinating Schwann cells attain the one-to-one relationship characteristic of the mature nerve. The mechanisms that underly this developmental control remain largely undefined. In this report, we examine the role of apoptosis in the determination of postnatal Schwann cell number. We find that Schwann cells isolated from postnatal day 3 rat sciatic nerve undergo apoptosis in vitro upon serum withdrawal and that Schwann cell death can be prevented by beta forms of neuregulin (NRG-beta) but not by fibroblast growth factor 2 or platelet-derived growth factors AA and BB. This NRG-beta-mediated Schwann cell survival is apparently transduced through an ErbB2/ErbB3 receptor heterodimer. We also provide evidence that postnatal Schwann cells undergo developmentally regulated apoptosis in vivo. Together with other recent findings, these results suggest that Schwann cell apoptosis may play an important role in peripheral nerve development and that Schwann cell survival may be regulated by access to axonally derived NRG.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apoptosis of Rat Adipose-Derived Stem Cells during Transdifferentiation to Schwann-Like Cell

Background: Adipose-derived stem cells (ADSCs) are a population of pluripotent cells used for tissue engineering purposes. The main purpose of the present study was to transdifferentiate the ADSCs to Schwann-like cells and to determine the intensity of apoptosis in ADSCs during the transdifferentiation process. Methods: ADSCs were isolated from the inguinal adipose tissue of adult rats and the ...

متن کامل

Promotion of periostin expression contributes to the migration of Schwann cells.

Neuregulin ligands and their ErbB receptors are important for the development of Schwann cells, the glial cells of the peripheral nervous system (PNS). ErbB3 deficiency is characterized by a complete loss of Schwann cells along axons of the peripheral nerves, impaired fasciculation and neuronal cell death. We performed comparative gene expression analysis of dorsal root ganglia (DRG) explant cu...

متن کامل

The trunk neural crest and its early glial derivatives: a study of survival responses, developmental schedules and autocrine mechanisms.

Regulation of survival during gliogenesis from the trunk neural crest is poorly understood. Using adapted survival assays, we directly compared crest cells and the crest-derived precursor populations that generate satellite cells and Schwann cells. A range of factors that supports Schwann cells and glial precursors does not rescue crest, with the major exception of neuregulin-1 that rescues cre...

متن کامل

Axonal interactions regulate Schwann cell apoptosis in developing peripheral nerve: neuregulin receptors and the role of neuregulins.

Programmed cell death during development resulting from the lack of appropriate survival factors has been demonstrated in both neurons and oligodendrocytes and occurs mostly in the form of apoptosis. We now demonstrate that Schwann cells in the rat sciatic nerve undergo apoptosis during early postnatal development and that the amount of apoptosis is markedly increased by axotomy. The apoptotic ...

متن کامل

Axonal regulation of myelination by neuregulin 1.

Neuregulins comprise a family of epidermal growth factor-like ligands that interact with ErbB receptor tyrosine kinases to control many aspects of neural development. One of the most dramatic effects of neuregulin-1 is on glial cell differentiation. The membrane-bound neuregulin-1 type III isoform is an axonal ligand for glial ErbB receptors that regulates the early Schwann cell lineage, includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 93 17  شماره 

صفحات  -

تاریخ انتشار 1996